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The following methods for handling the 
missing data were used:

Complete Case Analysis (CC). This •	
method removes any incomplete 
records before analysis, also known as 
listwise deletion.
Multiple Imputation Flat File (FF). •	
This method multiple imputes miss-
ing data while ignoring any clustering 
structure in the data by standard lin-
ear regression imputation.
Multiple Imputation Separate Classes •	
(SC). This method multiple imputes 
missing data by treating the cluster 
allocation as a fixed factor, so that dif-
ferences in intercepts between classes 
are modeled.
Multiple Imputation Multilevel Impu-•	
tation (ML). This method applies the 
Gibbs sampler as described above to 
generate multiple imputations from 
posterior of the missing data given the 
observed data.

The number of multiple imputation was 
fixed to 5. Parameter estimates are pooled 
using Rubin’s rules (Rubin, 1987; Rubin, 
1996). The complete-data model was fit-
ted by the lmer() function in R package 
lme4 (Pinheiro & Bates, 2000).

10.5.3 results

Table 10.1 contains results of the simula-
tions. When missing data are confined to 
yij, then CC is unbiased for both the fixed 
and random parameters, as expected. 
Method FF is unbiased in the fixed param-
eters, but severely biased in the random 
parameters for clustered data (i.e., when 
ω2 > 0). Method SC produces unbiased 
estimates of both the fixed and random 

parameters. Note that this is related to 
the fact that the model that generated the 
data included only random intercepts and 
no random slopes. Also, method ML is 
unbiased in both the fixed and random 
parameters.

If missing data occur in zij, the results are 
drastically different. The estimates under 
CC are severely biased, both for the fixed 
and random parameters. Thus even under 
MAR, the standard practice of eliminating 
incomplete records can produce estimates 
that are plainly wrong. Of the three impu-
tation methods, SC and ML yield estimates 
that are close to population values, FF is 
generally less successful. Method SC had 
computational problems for small clus-
ter sizes (nj = 20) because the number of 
observations in the cluster that remain after 
missing data were created could become 
too low (≤3). The FF and ML methods are 
insensitive to this problem since they com-
bine information across clusters.

Table 10.2 contains estimates of the cov-
erage of the 95% confidence interval for the 
fixed parameters. The number of replications 
used is equal to 100, so the simulation stan-
dard error is √(0.95(1 − 0.95)/100) = 2.2%. 
For missing data in yij, CC has appropriate 
coverage. However, coverage for missing 
data in zij is dismal, so statistical infer-
ences are unwarranted under incomplete 
zij. The FF is generally not well calibrated, 
and may achieve both under- or overcover-
age depending on the amount of clustering. 
The SC has appropriate coverage of β0, but 
coverage is suboptimal for βx. The ML has 
appropriate coverage for larger cluster sizes 
for both β0 and βx. Coverage for small clus-
ter sizes is however less than ideal, though 
still reasonable.

This section addressed the properties of 
four methods for dealing with univariate 

RT21067_C010.indd   186 3/5/10   12:33:41 PM



Multiple Imputation of Multilevel Data  •  187

ta
b

le
 1

0.
1

M
A

R 
M

iss
in

g 
D

at
a 

in
 E

ith
er

 y
ij o

r z
ij

J
n j

β 0
C
C

FF
SC

M
L

β x
C
C

FF
SC

M
L

σ2
C
C

FF
SC

M
L

ω
2

C
C

FF
SC

M
L

Y A
12

10
0

0.
00

0.
00

0.
00

0.
00

0.
01

0.
50

0.
51

0.
50

0.
50

0.
50

0.
75

0.
75

0.
75

0.
75

0.
76

0.
00

0.
00

0.
00

0.
02

0.
02

B
12

10
0

0.
00

0.
00

0.
01

−0
.0

2
0.

01
0.

50
0.

50
0.

49
0.

50
0.

50
0.

65
0.

65
0.

71
0.

65
0.

65
0.

10
0.

10
0.

03
0.

12
0.

11
C

12
10

0
0.

00
−0

.0
1

0.
00

0.
01

0.
00

0.
50

0.
50

0.
50

0.
50

0.
50

0.
45

0.
45

0.
63

0.
45

0.
45

0.
30

0.
30

0.
08

0.
33

0.
31

D
12

10
0

0.
00

0.
03

−0
.0

1
0.

00
0.

02
0.

50
0.

50
0.

49
0.

50
0.

50
0.

25
0.

25
0.

55
0.

25
0.

25
0.

50
0.

49
0.

13
0.

51
0.

51

E
24

50
0.

00
0.

00
0.

00
0.

00
0.

00
0.

50
0.

49
0.

50
0.

50
0.

50
0.

75
0.

74
0.

74
0.

75
0.

75
0.

00
0.

01
0.

00
0.

03
0.

02
F

24
50

0.
00

0.
02

0.
00

0.
00

0.
00

0.
50

0.
51

0.
50

0.
50

0.
50

0.
65

0.
65

0.
71

0.
65

0.
66

0.
10

0.
11

0.
03

0.
12

0.
12

G
24

50
0.

00
0.

01
0.

00
0.

00
−0

.0
1

0.
50

0.
50

0.
51

0.
50

0.
50

0.
45

0.
44

0.
62

0.
45

0.
45

0.
30

0.
30

0.
07

0.
32

0.
31

H
24

50
0.

00
−0

.0
2

0.
00

−0
.0

1
−0

.0
2

0.
50

0.
50

0.
50

0.
51

0.
51

0.
25

0.
25

0.
57

0.
25

0.
25

0.
50

0.
48

0.
13

0.
48

0.
50

I
60

20
0.

00
0.

00
−0

.0
1

0.
00

−0
.0

1
0.

50
0.

49
0.

50
0.

50
0.

50
0.

75
0.

74
0.

74
0.

74
0.

74
0.

00
0.

01
0.

00
0.

08
0.

03
J

60
20

0.
00

−0
.0

1
0.

01
0.

00
0.

00
0.

50
0.

50
0.

51
0.

50
0.

50
0.

65
0.

65
0.

71
0.

65
0.

65
0.

10
0.

10
0.

03
0.

17
0.

12
K

60
20

0.
00

0.
00

−0
.0

1
0.

00
0.

02
0.

50
0.

50
0.

50
0.

50
0.

50
0.

45
0.

45
0.

64
0.

45
0.

45
0.

30
0.

29
0.

07
0.

36
0.

31
L

60
20

0.
00

−0
.0

1
0.

01
0.

00
−0

.0
1

0.
50

0.
50

0.
50

0.
49

0.
49

0.
25

0.
25

0.
57

0.
25

0.
25

0.
50

0.
49

0.
13

0.
53

0.
49

Z A
12

10
0

0.
00

−0
.5

3
0.

00
0.

00
0.

00
0.

50
0.

32
0.

49
0.

49
0.

48
0.

75
0.

49
0.

75
0.

75
0.

74
0.

00
0.

00
0.

00
0.

00
0.

00
B

12
10

0
0.

00
−0

.4
9

0.
00

0.
00

−0
.0

1
0.

50
0.

34
0.

48
0.

49
0.

48
0.

65
0.

44
0.

66
0.

65
0.

66
0.

10
0.

05
0.

08
0.

11
0.

10
C

12
10

0
0.

00
−0

.3
6

0.
01

0.
01

0.
01

0.
50

0.
40

0.
45

0.
50

0.
49

0.
45

0.
34

0.
50

0.
45

0.
46

0.
30

0.
20

0.
23

0.
31

0.
30

D
12

10
0

0.
00

−0
.2

2
−0

.0
1

−0
.0

1
−0

.0
1

0.
50

0.
43

0.
40

0.
50

0.
50

0.
25

0.
21

0.
34

0.
25

0.
25

0.
50

0.
39

0.
42

0.
48

0.
52

E
24

50
0.

00
−0

.5
3

0.
00

0.
00

0.
00

0.
50

0.
33

0.
50

0.
48

0.
48

0.
75

0.
49

0.
75

0.
75

0.
74

0.
00

0.
00

0.
00

0.
01

0.
01

F
24

50
0.

00
−0

.4
9

0.
00

0.
00

−0
.0

1
0.

50
0.

35
0.

48
0.

50
0.

47
0.

65
0.

45
0.

67
0.

65
0.

66
0.

10
0.

06
0.

07
0.

10
0.

10
G

24
50

0.
00

−0
.3

9
−0

.0
1

−0
.0

1
0.

01
0.

50
0.

39
0.

44
0.

50
0.

49
0.

45
0.

33
0.

51
0.

45
0.

46
0.

30
0.

20
0.

23
0.

30
0.

29
H

24
50

0.
00

−0
.2

3
−0

.0
2

0.
00

0.
00

0.
50

0.
43

0.
40

0.
50

0.
49

0.
25

0.
21

0.
35

0.
25

0.
25

0.
50

0.
41

0.
39

0.
50

0.
50

(C
on

tin
ue

d)

RT21067_C010.indd   187 3/5/10   12:33:41 PM



188  •  Stef van Buuren
ta

b
le

 1
0.

1

M
A

R 
M

iss
in

g 
D

at
a 

in
 E

ith
er

 y
ij o

r z
ij (

Co
nt

in
ue

d)

J
n j

β 0
C
C

FF
SC

M
L

β x
C
C

FF
SC

M
L

σ2
C
C

FF
SC

M
L

ω
2

C
C

FF
SC

M
L

I
60

20
0.

00
−0

.5
3

0.
00

−0
.0

1
−0

.0
1

0.
50

0.
33

0.
50

0.
47

0.
48

0.
75

0.
49

0.
74

0.
74

0.
73

0.
00

0.
00

0.
00

0.
02

0.
01

J
60

20
0.

00
−0

.5
0

0.
00

0.
00

−0
.0

1
0.

50
0.

34
0.

49
0.

49
0.

48
0.

65
0.

44
0.

66
0.

65
0.

65
0.

10
0.

05
0.

08
0.

12
0.

09
K

60
20

0.
00

−0
.4

1
−0

.0
1

#
−0

.0
1

0.
50

0.
38

0.
44

#
0.

47
0.

45
0.

33
0.

52
#

0.
47

0.
30

0.
18

0.
25

#
0.

27
L

60
20

0.
00

−0
.2

6
−0

.0
1

#
0.

00
0.

50
0.

42
0.

40
#

0.
49

0.
25

0.
20

0.
35

#
0.

27
0.

50
0.

39
0.

41
#

0.
46

N
ot

es
: 

Av
er

ag
e e

st
im

at
es

 o
f fi

xe
d 

(β
0, 
β x

) a
nd

 ra
nd

om
 va

ria
nc

e (
σ2

, ω
2 ) 

pa
ra

m
et

er
s i

n 
fo

ur
 m

et
ho

ds
 fo

r h
an

dl
in

g 
m

iss
in

g 
da

ta
 (C

C
 =
 c

om
pl

et
e c

as
e a

na
ly

sis
, F

F 
= 

M
I fl

at
 fi

le
, S

C
 =
 M

I s
ep

a-
ra

te
 g

ro
up

, M
L 
= 

M
I m

ul
til

ev
el

).
# 

so
lu

tio
n 

co
ul

d 
no

t b
e 

ca
lc

ul
at

ed
 d

ue
 to

 a
lm

os
t e

m
pt

y 
cl

as
se

s.

RT21067_C010.indd   188 3/5/10   12:33:41 PM



Multiple Imputation of Multilevel Data  •  189

missing data within a multilevel context. 
The CC method is easy and works well under 
MAR when missing data are restricted to 
yij. However, the performance CC with zij 
missing at random is bad. We therefore rec-
ommend against CC if many zij are missing. 
An alternative is to apply multiple imputa-
tion. Three such methods were studied. The 
overall best performance was obtained by 
the ML Gibbs sampling method.

10.6  multIvarIate mIssIng 
data In yj and zj

10.6.1 general approach

Missing data may also occur in yij and zij 
simultaneously. The present section deals 
with the case where both yij and zij are incom-
plete. There are two general approaches to 
impute multivariate missing data: Joint 

table 10.2

Coverage (in Percentage) of the True Values by the 95% Confidence Interval for Fixed 
Parameter Estimates Under Four Methods for Treating Missing Data in Y or Z, Respectively

J nj β0 CC FF SC ML βx CC FF SC ML

Y
A 12 100 95 96 72 90 90 95 96 73 72 90
B 12 100 95 89 69 96 87 95 96 82 76 91
C 12 100 95 94 71 94 91 95 97 98 70 93
D 12 100 95 94 68 94 97 95 94 100 78 91

E 24 50 95 95 71 91 87 95 97 66 68 88
F 24 50 95 96 73 90 89 95 97 76 63 87
G 24 50 95 92 63 93 88 95 96 90 66 94
H 24 50 95 91 73 94 95 95 96 95 72 87

I 60 20 95 98 66 92 84 95 98 73 69 90
J 60 20 95 99 64 88 88 95 93 71 68 89
K 60 20 95 97 67 88 98 95 97 79 76 86
L 60 20 95 92 66 96 88 95 97 89 73 87
Z
A 12 100 95 0 88 92 95 95 0 84 84 93
B 12 100 95 0 84 94 87 95 2 83 85 94
C 12 100 95 25 82 90 94 95 23 49 86 94
D 12 100 95 75 91 91 92 95 39 5 87 95

E 24 50 95 0 88 93 90 95 0 94 80 87
F 24 50 95 0 88 99 95 95 1 78 84 87
G 24 50 95 5 96 96 95 95 11 25 94 91
H 24 50 95 54 91 94 94 95 29 1 94 94

I 60 20 95 0 91 92 89 95 0 77 78 85
J 60 20 95 0 87 95 98 95 1 83 86 83
K 60 20 95 0 90 # 96 95 2 35 # 79
L 60 20 95 17 88 # 91 95 16 1 # 85

Notes: CC = complete case analysis, FF = MI flat file, SC = MI separate group, ML = MI multilevel.
# solution could not be calculated due to almost empty classes.
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Modeling (JM) and Fully Conditional 
Specification (FCS).

Joint modeling partitions the observa-
tions into groups of identical missing data 
patterns, and imputes the missing entries 
within each pattern according to a joint 
model for all variables. The first such model 
was developed for the multivariate normal 
model (Rubin & Schafer, 1990). Schafer 
(1997) extended this line and developed 
sophisticated JM methods for generating 
multivariate imputations under the multi-
variate normal, the log-linear, and the gen-
eral location model. This work was extended 
to include multilevel models (Schafer & 
Yucel, 2002; Yucel, 2008).

The fully conditional specification 
imputes data on a variable-by-variable basis 
by specifying an imputation model per 
variable. The FCS is an attempt to specify 
the full multivariate distribution of the 
variables by a set of conditional densities 
for each incomplete variable. This set of 
densities is used to impute each variable by 
iteration, where we start from simple initial 
guesses. Though convergence can only be 
proved in some special cases, the method 
has been found to work well in practice 
(Raghunathan, Lepkowski, van Hoewyk, & 
Solenberger, 2001; Van Buuren et al., 1999; 
Van Buuren, Brand, Groothuis-Oudshoorn, 
& Rubin, 2006). The R mice package (Van 
Buuren & Groothuis-Oudshoorn, 2000) 
enjoys a growing popularity. Van Buuren 
(2007) provides an overview of the similari-
ties and contrasts of JM and FCS.

10.6.2 simulation study

Using the same complete-data model as 
before, we created missing data in both 
xij and yij by applying mechanisms Y and 

Z each to a random split of the data. For 
missing zij the procedure is identical to that 
given before. For missing yij, the procedure 
is reversed. For values of zij < 0, the nonre-
sponse probability in yij is 90%. For zij ≥ 0, 
this probability is 10%. Thus, many high zij 
and many low yij will be missing.

We created five multiple imputed data 
sets with mice using the three imputation 
methods. The number of iterations in mice 
was fixed to 20.

10.6.3 results

Table 10.3 contains the parameter estimates 
averaged over 100 simulations. Complete 
case (CC) analysis severely biases the esti-
mates of the intercept term β0 and the 
within-group variance σ2, especially when 
the clustering is weak. Methods FF and SC 
have a somewhat better performance for the 
fixed effects, and behave differently for the 
variance estimates. The best overall method 
is ML, but note that ML is not yet ideal 
since β0 is biased slightly upward while βx 
is biased slightly downward. No systematic 
bias appears to be present in the variance 
estimates, so ML seems to recover the mul-
tilevel structure present in the original data 
quite well.

Table 10.4 contains the accompanying 
coverage percentages. The best method is 
ML, but none of the methods is really sat-
isfactory. Trouble cases include A, E, and 
I, where ω2  = 0. The Gibbs sampler can get 
stuck if there is no between-cluster varia-
tion (Gelman et al., 2008), so this might be a 
reason for the low coverage. It also appears 
to be difficult to get appropriate coverage 
for small cluster sizes.

The simulations suggest that FCS is a 
promising option for imputing incomplete 
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multilevel data. The FCS used in conjunc-
tion with multiple multilevel imputation is 
a considerable improvement over standard 
practice. The methodology is not yet ideal 
however, and further optimization and tun-
ing is needed.

10.7 conclusIons

Multilevel data can be missing at differ-
ent levels. Variables in which missing data 
occur can have different roles in the analy-
sis. The optimal way to deal with missing 
data depends on both the level and the role 
of the variable in the analysis.

Multilevel models are often presented 
in the form of the linear mixed model 
Equation 10.1. This formulation complicates 
conceptualization of the missing data prob-
lem because the same variable can appear at 

different places. It is useful to write the mul-
tilevel model as a slopes-as-outcomes model 
Equation 10.2, which clearly separates the 
variables at the different levels. Section 10.2 
describes how Equations 10.1 and 10.2 are 
related.

Missing data can occur in yj (level-1 out-
comes), Zj (level-1 predictors) are Wj  (level-2 
predictors) and j (class variable). The prob-
lem of missing data in yj has received con-
siderable attention. The linear multilevel 
model provides an efficient solution to this 
problem if the data are missing at random 
and if the model fits the data. There is a large 
literature on what can be done if the MAR 
assumption is suspect, or when models for 
other outcome distributions are needed. By 
comparison, the problem of missing data in 
Zj, Wj and j received only scant attention. 
The usual solution is to remove any incom-
plete records, which is wasteful and could 
bias the estimates of interest. Several fixes 

table 10.4

Coverage (in Percentage) of the True Values by the 95% Confidence Interval for Fixed 
Parameter Estimates Under Four Methods for Treating Missing Data in Both Y and X

J nj β0 CC FF SC ML βx CC FF SC ML

YZ
A 12 100 95 0 5 42 37 95 46 29 27 85
B 12 100 95 2 18 64 81 95 55 23 22 77
C 12 100 95 45 25 83 89 95 71 32 26 76
D 12 100 95 83 38 85 90 95 88 29 17 82

E 24 50 95 0 6 39 37 95 48 28 30 64
F 24 50 95 0 9 56 79 95 56 30 27 67
G 24 50 95 16 21 76 84 95 75 25 15 55
H 24 50 95 69 28 81 87 95 82 28 13 72

I 60 20 95 0 1 # 34 95 42 19 # 55
J 60 20 95 0 13 # 50 95 53 24 # 57
K 60 20 95 1 12 # 73 95 52 22 # 42
L 60 20 95 28 17 # 82 95 76 27 # 43

Notes: CC = complete case analysis, FF = MI flat file, SC = MI separate group, ML = MI multilevel.
# solution could not be calculated due to almost empty classes.
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have been proposed, but none of these have 
yet gained wide use.

Other questions that need to be addressed 
are less particular to the multilevel setting: 
the missing data pattern, the missing data 
mechanism, the measurement scales used, 
and the study design. A successful attack on 
a given incomplete data problem depends 
on our capability to address these factors 
for the application at hand.

Section 10.3 outlines six strategies. Quick 
fixes like listwise deletion, last observation 
carried forward and class mean imputa-
tion will only work in a limited set of cir-
cumstances and are generally discouraged. 
Prevention, likelihood-based methods, and 
multiple imputation are methodologically 
sound approaches based on explicit assump-
tions about the missing data process.

Multiple imputation is a general statisti-
cal technique for handling incomplete data 
problems. Some work on MI in multilevel 
setting has been done, but many open issues 
remain. We performed a simulation study 
with missing data in yij or zij, and compared 
complete case analysis with three MI tech-
niques: flat file (FF) imputation that ignores 
the multilevel structure, separate clusters 
(SC) imputation that includes a group factor, 
and multilevel (ML) imputation by means of 
the Gibbs sampler. Complete case analysis 
was found to be a bad strategy with missing 
data in zij. The best imputation technique 
was ML. A second simulation addressed the 
question of how the methods behave when 
missing data occur simultaneously in yij or 
zij. Though its performance is not yet ideal, 
multiple imputation by ML within the FCS 
framework considerably improves upon 
standard practice.

Simulation is not reality. The missing data 
mechanisms we have used in the simulation 

have a considerable amount of miss-
ing information, and are probably more 
extreme than those encountered in prac-
tice. The simulations are still useful though. 
Differences between methods in absolute 
terms may be smaller in practice, but the 
best methods will continue to dominate 
others in less extreme situations. All other 
things being equal, we therefore prefer to 
use imputation methods that performs best 
“asymptotically” in extreme situations.

Since ML requires more work than 
 complete case analysis it would be useful 
to have clear-cut rules that say when doing 
ML is not worth the trouble. No such rules 
have yet been devised. This would be a use-
ful area of further research. Another area 
for research would be to further optimize 
and tune the ML imputation method to 
the multivariate missing data problem. 
For example, taking alternative distribu-
tions for within-cluster residual variance 
σj

2 could improve performance. The cur-
rent implementation of the method uses a 
full Gibbs sampler. Though the algorithm 
is robust, it is not particularly fast. Adding 
parameter expansion (Gelman et al., 2008) 
could be useful to prevent the Gibbs sam-
pler from getting stuck at the border of the 
parameter space at ω2 = 0. Computations 
could be speeded up, for example by 
obtaining marginal maximum likelihood 
estimates of β and Ω using numerical 
integration via Gauss-Hermite (Pinheiro 
& Bates, 2000). Extensions toward higher 
level models are also possible (Yucel, 
2008). Finally, we can classify missing data 
problems by combining the answers on 
the five questions posed in Section 10.3. 
Classification of the combinations opens 
up a whole research agenda with many 
white spots.
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