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SUMMARY

The worm plot visualizes di6erences between two distributions, conditional on the values of a covariate.
Though the worm plot is a general diagnostic tool for the analysis of residuals, this paper focuses on
an application in constructing growth reference curves, where the covariate of interest is age. The LMS
model of Cole and Green is used to construct reference curves in the Fourth Dutch Growth Study 1997.
If the model ;ts, the measurements in the reference sample follow a standard normal distribution on all
ages after a suitably chosen Box–Cox transformation. The coe=cients of this transformation are modelled
as smooth age-dependent parameter curves for the median, variation and skewness, respectively. The
major modelling task is to choose the appropriate amount of smoothness of each parameter curve. The
worm plot assesses the age-conditional normality of the transformed data under a variety of LMS
models. The ;t of each parameter curve is closely related to particular features in the worm plot,
namely its o6set, slope and curvature. Application of the worm plot to the Dutch growth data resulted
in satisfactory reference curves for a variety of anthropometric measures. It was found that the LMS
method generally models the age-conditional mean and skewness better than the age-related deviation
and kurtosis. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

The last decade has witnessed an upsurge in methods for constructing age-related reference
curves; see the comparison by Wright and Royston [1] for an overview. The major task in
centile construction is to smooth the reference distribution in two directions simultaneously,
between age and within age. Though this problem can be solved in a variety of ways, all
approaches need to specify the amount of smoothness that provides a reasonable trade-o6
between parsimony of the curves and the ;delity to the data. Di6erent choices lead to di6erent
reference values and to dissimilar appearances of the curves. It is therefore sensible to use
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1260 S. VAN BUUREN AND M. FREDRIKS

diagnostics that guide the choice of smoothness parameters in ;tting a particular set of data.
The present paper introduces a simple, general and Jexible graphical method, termed worm
plot, to support such modelling decisions.
The method can be used in situations where smoothing within age relies on a theoretical

distribution. For example, the LMS method [2; 3] assumes that the reference distribution at
a given age is normal after a Box–Cox transformation. Other possibilities include normaliz-
ing transformations like the shifted log-function [4], and other distributions like the Johnson
distribution [5]. The worm plot can be applied to other transformations and distributions, but
this paper focuses on the use of diagnostics in conjunction with the LMS method.
The text introduces the Fourth Dutch Growth Study, and then brieJy reviews the LMS

model and some diagnostic tools. Next, we introduce the worm plot, highlight its role in
modelling reference curves, and apply it to the Fourth Dutch Growth Study. Finally, the text
discusses some choices in the worm plot, and its relation to other methods for choosing
smoothness parameters.

2. FOURTH DUTCH GROWTH STUDY 1997

The Fourth Dutch Growth Study [6; 7] is a cross-sectional study that measures growth and
development of the Dutch population between ages 0 and 21 years. The study is a follow-up
to earlier studies performed in 1955 [8], 1965 [9] and 1980 [10], and its primary goal is to
update the 1980 references. Children with diagnosed growth disorders, those on medication
known to interfere with growth, and those without a West European parent were excluded
from the population de;nition. Like the previous studies, the sample was strati;ed by province,
municipal size, sex and age. The planned sample size was equal to 16 188, and based on the
objective to detect at least a 1.8 cm ;nal height di6erence between the 1997 and 1980 studies
with a power of 99 per cent. Age groups were chosen as follows: six age groups in year
1; four in year 2; two in year 3; three over the period 3–8; and two per year between
ages 9 and 20. The age group interval of girls older than 17 years was a year instead of a
half year. The realized sample size was n=14500. Table I contains the composition of the
sample.
The study measured, among other variables, height, weight and head circumference. Until

the age of two, length of infants was measured to the nearest 0.1 cm in the supine position.
A ‘microtoise’ was used to measure height of children older than 2 years. Children younger
than 4 years were measured by 24 ‘Well Baby Clinics’ during the regular periodical health
examination. Children between the ages of 4 and 9 were measured by 25 ‘Municipal Health
Services’ during regular health assessments. Older children received a personal invitation based
on a strati;ed sample from the Municipal Register O=ce. Non-response (children who refused
to show up at the health clinic or refused a measurement) varied between 20 per cent in ages
of 11 to more than 60 per cent in those over age 17. Of a random sample of non-responders
(n=230), 170 returned a questionnaire. No signi;cant di6erences from the study sample
were found.
In order to obtain a su=ciently large sample, additional measurements were done at high

schools, universities, a youth festival, and during medical examinations for joining the army.
No statistically signi;cant di6erences in height were found between the original and additional
sample. The distributions of the combined sample for age, sex, municipal size, family size and
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Table I. Sample size of the Fourth Dutch Growth
Study 1997 (Dutch children) by age and sex.

Age Boys Girls

0–1 1219 1219
1–2 807 797
2–3 464 454
3–4 295 314
4–5 84 84
5–6 134 137
6–7 66 63
7–8 142 140
8–9 110 108
9–10 334 320
10–11 350 366
11–12 367 364
12–13 381 395
13–14 432 470
14–15 414 392
15–16 407 400
16–17 355 240
17–18 350 183
18–19 333 217
19–20 271 172
20–21 153 171
21–22 14 12
Total 7482 7018

child education were similar to national ;gures obtained from Statistics Netherlands [11]. The
only exception was geographical region for girls over age 18. A weighted analysis, beyond
the scope of this paper, was performed to correct the height references for this e6ect.

3. LMS MODEL

The LMS method [2; 3] describes a variable y as a semi-parametric regression function of a
time-dependent variable t, so that the distribution of y changes gradually when plotted against
t. The distribution is summarized by three time-varying natural spline curves: the Box–Cox
power that converts y to normality (L); the median (M); the coe=cient of variation (S).
Let L(t); M (t) and S(t) stand for the value of the L;M and S curves at age t for a given
LMS model. The standard deviation score z of a particular measurement y at age t can be
computed as

z=((y=M (t))L
(t) − 1)=L(t)S(t); if L(t) �=0

or

z= log(y=M (t))=S(t); if L(t)=0

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1259–1277
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The number of e6ective degrees of freedom (EDF) [12] is a convenient parameter that ex-
presses the amount of adjustment necessary for smoothing a set of data. In the LMS model,
the smoothness of the L, M and S curve is characterized by three scalar EDF-parameters:
EL; EM and ES . An EDF of zero constrains the entire curve to a given value, and an EDF of
1 corresponds to a constant value whose location is to be estimated from the data. An EDF
of 2 yields a straight line, while larger EDFs allow for increasingly more Jexibility in the
;tted curves. Note that this de;nition of EDFs may di6er from that of other authors, as EDFs
are strictly not de;ned for values less than 2. Also, EDFs are sometimes presented reduced
by one, so that the EDF for a straight line is 1 rather than 2. Cole and Green [3] argued that
the distributions of EL; EM and ES in the LMS model are largely independent of each other,
implying that one EDF can be optimized while ;xing the other two.
In the following, we will use an abbreviated notation for LMS models as ‘LMMSX’,

where ‘L’ stands for EL, ‘MM’ for EM , ‘S’ for ES and where ‘X’ is a transformation op-
tion (‘space’ if none, ‘R’ if rescaled, ‘P’ if power transformation). Thus, model 4096R has
EL=4; EM =9; ES =6, with the rescale option set. Transformation options are a speci;c
feature of the LMS program that will transform the time axis. The rescale transformation
(‘R’) ;ts the LMS model on a rescaled time axis that stretches periods of rapid growth
(for example, infancy and puberty), and that compresses periods with lower growth velocities
(mid-childhood or adulthood). In e6ect, the distribution is allowed to change more rapidly
at locations where the M curve is steep. After ;tting in transformed time, the results are
scaled back to the original time scale. The power transform (‘P’) option allows the user to
specify the two parameters (o6set and power) to rescale the time axis. Cole et al. [13] de-
scribe these options in more detail. The judicious use of the options may substantially improve
the ;t.

3.1. Diagnostics

For a given choice of EL; EM and ES , the LMS program maximizes the penalized likeli-
hood. Several types of diagnostic skills and tools are helpful for inspecting the quality of the
solution:

(i) Visual inspection of the shape of the reference curves. Experienced researchers may
recognize the appropriateness of a given set of reference curves based on subtle features
in the shape, like a ‘pubertal belly’ in cross-sectional data. In general, substantial exposure
to reference curves is needed to develop the necessary skills.

(ii) Centiles plotted onto the individual data points. This type of plot is useful for inspect-
ing outliers and for detecting gaps in the data and gross errors in the model, but its
resolution is too limited to be helpful in choosing among di6erent models. The measure-
ments can be visualized in both the original and in the SD scale, but the latter is often
clearer.

(iii) Empirical and .tted centiles plotted on top of each other. This is an old and quite
accurate technique in which the observations are divided into age groups. Empirical
centiles are computed for each group, and these are plotted together with the ;tted
curves. If everything is right, the ;tted curves should be close to the point estimates
(that is, within sampling error). Various choices are possible for the vertical scale (raw,
standardized for mean and=or standard deviation). A disadvantage of the raw data plot is
that if the standard deviation changes with age, the same distance means di6erent things
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at di6erent ages. Van Wieringen [14] pioneered a standardized graph under the heading
of ‘graphical graduation’. Care is needed in computing extreme percentiles, as some
interpolation is needed. The algorithms implemented in SPSS and SAS can give odd
results (mostly estimates that are too wide, irrespective of the interpolation algorithm),
and we prefer the S-plus function quantile() for this purpose. As the display does not
contain individual observations, it may be insensitive to subtle deviations between the
;tted and empirical distributions, especially if the number of centiles is small.

(iv) Observed and expected counts. Healy et al. [15] suggested comparing the observed and
expected frequencies of observations within de;ned centile and age groups. This can
only be done if one assumes a distribution of the measurements for each age group. One
must choose cutpoints for centile and age groups, thus leading to somewhat arbitrary
comparisons. The Kolmogorov–Smirnov test and the Q–Q plot, both described below,
evade the choice of centile cutpoints, and thus compare the entire observed and expected
age-related distribution.

(v) Statistical tests. If the distribution of the measurements is known, a statistical test can
be used to test the ;t of the solution. In the LMS model, z should be distributed as
N(0; 1) at all ages. Normality at di6erent age groups can be checked by means of, for
example, the Shapiro–Wilk W test. This test is sensitive in picking up any skewness,
but is less powerful in detecting kurtosis [16]. For other distributions, one could apply
a Kolmogorov–Smirnov test. A disadvantage of tests in general is that they do not
tell how the empirical and theoretical distributions di6er. Techniques based on statistical
signi;cance may over;t the curves in large samples. Purists might say that the application
of inferential tests for modelling does not comply with the orthodox Neyman–Pearson
criteria (since the same data are repeatedly used), and the interpretation of non-signi;cant
tests as evidence for the model is not without problems [17].

(vi) Quantile–quantile plot (Q–Q plot) of the z-scores. Q–Q plots [18] can be applied if
the measurements are supposed to follow a known distribution. The display plots the
quantiles of the theoretical distribution (on the horizontal axis) against those of the
empirical distribution (on the vertical axis). The Q–Q plot for normal data, also known
as the normal probability plot, is best known, but it can be adapted to other distributions.
The plot yields insight into structural characteristics (for example, skewness, kurtosis) of
empirical deviations from the assumed distribution. In its detrended form, the Q–Q plot
is very sensitive to subtle deviations [19]. Detrended means that each empirical quantile
is subtracted from its corresponding unit normal quantile. As will be demonstrated below,
the use of the Q–Q plot as a global diagnostic is limited though.

(vii) Worm plot. The worm plot consists of a collection of detrended Q–Q plots, each of
which applies to one of successive age groups. The vertical axis of the worm plot
portrays, for each observation, the di6erence between its location in the theoretical and
empirical distributions. The data points in each plot form a worm-like string. The shape
of the worm indicated how the data di6er from the assumed underlying distribution, and
when taken together, suggests useful modi;cations to the model. A Jat worm indicates
that the data follow the assumed distribution in that age group.

Note that the application of the latter four approaches require distributional assumptions,
whereas the ;rst three do not. In practice, one will typically apply a combination of diagnos-
tics as in, for example, the recent paper by Royston and Wright [20].
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Figure 1. Conventional (left) and detrended Q–Q plot (right) of the z-scores of height of Dutch boys
(all ages combined, LMS model 0051R). The detrended Q–Q plot improves upon the resolution of the
conventional display and includes 95 per cent con;dence intervals. Both ;gures convey the misleading

message that model 0051R ;ts reasonably well.

3.2. Illustration

Figure 1 contains the convention Q–Q plot and the detrended Q–Q plot for a normal distri-
bution of z scores of over 7000 boys in the fourth Dutch Growth Study 1997. All ages are
combined here. The detrended plot on the right contains the 95 per cent con;dence interval of
the unit normal quantiles. For a given quantile z with associated probability p and a sample
size n, the 95 per cent con;dence interval is computed as ±1:96×f(z)−1√(p(1 − p)=n),
where f(z) is the normal density function [21]. Owing to scarce data, the interval becomes
broader towards the extremes, so in the tails larger di6erences between theoretical and empir-
ical quantiles are tolerated. Except for the area below −2 SD, the empirical quantile points
are all located near the main diagonal. The marginal z scores, that is the z scores of all age
groups combined, thus closely follows a normal distribution. However, this apparent ;t does
not imply that the model even remotely ;ts the data.
Figure 2 is a worm plot of the same data. The data are split into 16 age groups of equal size,

and the relevant computations are done in each group separately. The exact age boundaries
are given in each panel of the plot. Figures 1 and 2 provide dramatically dissimilar views
on the same data. In fact, Figure 2 shows that the model ;ts badly at almost all ages. The
only reasonable ;t occurs in age group 9.1–10.4. For other ages, the worms move around
in all directions, indicating the existence of gross errors in the ;t of the statistical model.
The modelling problem is now to ‘tame the worms’, so that each of them becomes as Jat as
possible and aligns up neatly along the horizontal axis. The 95 per cent con;dence interval
gives an impression of the sampling variation, and delineates the region where the worm
should be located most of the time if the empirical and theoretical distributions agree. The
shape of the worms communicates the type of mis;t between model and data. Table II
summarizes several aspects of the distribution. Each shape describes a di6erent aspect of the
model ;t.
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Figure 2. Worm plot of the z-scores for height of Dutch boys (LMS model 0051R, same as Figure 1).
The plot consists of detrended Q–Q plots in 16 age groups of equal size, ordered from the lower-left

panel to the upper-right panel. Model 0051R ;ts badly in almost all ages.

Table II. Interpretation of various patterns in the worm plot.

Shape Moment If the Then the

Intercept Mean worm passes above the origin, ;tted mean is too small.
worm passes below the origin, ;tted mean is too large.

Slope Variance worm has a positive slope, ;tted variance is too small.
worm has a negative slope, ;tted variance is too large.

Parabola Skewness worm has a U-shape, ;tted distribution is too skew to the left.
worm has an inverted U-shape, ;tted distribution is too skew to the right.

S-curve Kurtosis worm has an S-shape on the left bent down, tails of the ;tted distribution are too light.
worm has an S-shape on the left bent up, tails of the ;tted distribution are too heavy.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1259–1277
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Figure 3. Raw and ;tted percentiles for height of Dutch boys (all ages combined, LMS model 0051R).

4. MODELLING STRATEGY

The number of EDFs in Figures 1 and 2 is equal to EL=0; EM =5 and ES =1 for the L;M
and S curves, respectively, compactly written as 0051R. This model corresponds to a normal
distribution of constant variation and a moderate spline for the M curve. Figure 2 suggests
that the model is too inJexible for the data. This is con;rmed in Figure 3, which draws the
raw and ;tted percentiles on the same diagram. The P50 does not follow the raw median and
misses the bend at about 15–16 years. Until the age of 6 and above the age of 17, the P3
and P97 reference curves are too wide, while they are too narrow during puberty.
Cole provides guidelines on obtaining optimal values for EL; EM and ES (see the docu-

mentation of the LMS FORTRAN program in ftp==:ftp.statlib.edu=lms). Starting with values
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46EM 6 6 and EL=ES =1, his strategy is to optimize EM ;rst by increasing EM progres-
sively by 1 until the change in the penalized likelihood becomes small. Let this change be
denoted as the D-statistic, de;ned as D(v; w)=2(l(w)− l(v)), where v is the more restrictive
model nested inside model w, and where l(v) and l(w) are the corresponding penalized log-
likelihood values. It is common to assume that D has an asymptotic �2-distribution with d
degrees of freedom, where d is the number of additional free parameters in the less restricted
model [12]. A typical cut-o6 point of D is 2, but the precise choice depends also on sample
size, where larger samples need larger cut-o6 points. The ;nal decision on the EM -parameter
will depend on the appearance of the M curve. The process is repeated for the S and L
curves, ;xing the previous optimal values of EM and ES . Cole suggested skipping the model
with EL=2 and ES =2 in order to evade ‘silly values at the extremes’. In addition to the M
step, one could experiment with alternative transformations of the time axis, which may help
to reduce the complexity of the M curve.
This conditional optimization approach is simple and relatively easy to perform. The se-

quence of steps (;rst M , then S, and then L) is sensible because the M curve describes the
most important variation, while the inJuence of L is relatively small. Subjective elements
in the procedure include the choice of the cut-o6 point and the visual assessment of the M
curve. With sample sizes around 7000, we frequently found that a change of say 5 or 10
units did not appear to have any inJuence on the shape of the curves. It sometimes happened
that increasing EM introduced spurious wiggles.
It is often di=cult to see what actually happens to the ;tted curves when an EDF changes.

Also, it is hard to assess how well the curves actually ;t the data. The worm plot can be
used in a visual analogue to the conditional optimization strategy, and remedies these two
de;cits. This is done by the following steps:

1. increase EM such that each worm passes through the origin of the plot;
2. then, increase ES such that each worm has more or less a zero slope;
3. then, increase EL such that quadratic shapes (U-shapes) disappear.

By aligning worm plots of two models side by side, it is easy to see at what points the LMS
optimization changes the curves. This requires the same cognitive skills as needed for the
children’s game ‘;nd the 10 di6erences between two pictures’. The worm plot gives a visual
impression of the ;t between data and model at di6erent ages.

5. MODELLING THE FOURTH DUTCH GROWTH STUDY 1997

Figure 4 is the worm plot for model 0101R for the Dutch male height data, thus where
EM has increased from 5 to 10. The vertical distance between worm and origin is now small
everywhere, which indicates that the M curve does a reasonable job in modelling mean height.
Increasing EM to 11 did not appreciably improve upon the display, so EM =10 was considered
an appropriate choice.
Figure 5 is a similar display for models with ES =6 instead of ES =1. The worms are

Jattened in comparison to Figure 4, signalling that the new S curve is a better description of
the di6erences in height variation across ages. Di6erences between models 0106R and 0107R
were deemed insigni;cant, so ES =6 was taken as the ;nal choice.
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Figure 4. Worm plot for height of Dutch boys (LMS model 0101R). Worms are close to the origin,
indicating a reasonable ;t of the M curve.

The second [9] and third [10] Dutch growth studies found a skewed conditional height
distribution during the ;rst years of puberty. Does this also hold in the present data? Sev-
eral values for EL (0,1,3,4) were tried, thus correcting for age-related skewness. The overall
impression is that the e6ect of increasing EL is quite small. Figure 6 displays the worm plot
corresponding to model 4106R. This model ;ts slightly better than the normal model with
EL=0. If there were a di6erence of only one degree of freedom between both models, we
would prefer the more complex model over the simpler normal model. However, here the
models di6er by four degrees of freedom. The worm plots for models with EL=1 and EL=3
lie in between those in Figures 5 and 6, and the transitions are small. Figure 7 is a diagram
of the raw and ;tted percentiles for models 0106R and 4106R. It appears that the e6ect of
increasing EL is very small. Note that there is a rising linear trend in height after age 19. This
reJects the strength of the spline approach compared to a parametric curve (for example, the
Jolicoeur model) which assumes that height reaches an asymptote in adulthood. Model 0106R
was used to update the Dutch growth references, and the o=cial height reference values [6]
are based on this model.
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Figure 5. Worm plot for height of Dutch boys (LMS model 0106R). Worms are relatively free of linear
trend, indicating a reasonable ;t of the S curve.

6. PROPERTIES

6.1. Shape estimates

It is possible to quantify the basic features of the worm shape. Polynomial regression of
the empirical on the theoretical quantiles gives numerical estimates of various aspects of the
discrepancy between the observed and theoretical distributions. Suppose that the results are
scaled according to an equation of the form Y =�0 + �1X + �2X 2 + �3X 3, where Y denotes
the vector of detrended ordered observations and where X denotes the vector of quantiles.
The idea is that the shape coe=cient �0 measures the amount of mis;t of the M curve,
�1 measures the amount of mis;t of the S curve, and so on. The correspondence between
the �’s and the moments of the empirical distribution relates to the inverse Cornish–Fisher
expansion [22; 23]. Some statistical literature suggests that �0 is equal to the di6erence of the
theoretical and empirical means, and that �1 measures di6erences in variation [24; 25]. The
inverse Cornish–Fisher expansion suggests that �2 and �3 measure di6erences in skewness and
kurtosis, respectively, but the precise relation between these coe=cients and more common

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:1259–1277
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Figure 6. Worm plot for height of Dutch boys (LMS model 4106R). Adding skewness parameters
hardly improves the ;t.

measures of skewness and kurtosis is not yet clear. The HRY method [15] implicitly relies
on the properties, as it describes the form of the age-conditional distribution as polynomial
functions of the unit normal quantiles, as above. Healy et al. note that increasing the degree of
these polynomials from 1 to 2 allows for skewness, and increasing it to 3 allows for skewness
and kurtosis.
Shape coe=cients can be used for quantitative assessments of model ;t. Coe=cients of the

same type (for example, all �0) can be compared across models to see the e6ect of model
alterations. Shape coe=cients �0 and �1 are approximately on the same scale and can be
compared with each other. Coe=cients �2 (quadratic) and �3 (cubic) are on smaller scales.
To give some idea of their interpretation, we categorize solutions where the absolute values
of �0 or �1 are in excess of 0.10 as mis;ts. For �2 we use a threshold of 0.05, and for �3
we take 0.03.

6.2. Choices in the worm plot

Some details of the worm plot, like the number of age groups and the choice of scales, have
not yet been discussed. When restricted to a square layout, convenient choices include the
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Figure 7. Raw and ;tted percentiles for height of Dutch boys (LMS models 0106R and 4106R). Model
0106R is the o=cial 1997 height reference update.

3× 3, the 4× 4 and the 5× 5 plotting grid, thus de;ning 9, 16 and 25 age groups, respectively.
In general, increasing the number of age groups provides a more detailed, but less stable plot.
As a rough guideline, at least 200–300 points per group are needed for a reasonably stable
picture. In our experience, using nine age groups might obscure important deviations from
normality, like those concerning the whole age range as in Figure 1. On the other hand, the
display becomes somewhat crowded if 25 or more groups are formed, especially if side-by-
side comparisons are being made. In addition, the number of points can become quite low.
The numbers of 16 groups seems to be a good compromise, but it is also useful to experiment
with other resolutions.
The scale of the y-axis was chosen as the range −0:5 to +0.5 SD for all panels. This

range is a compromise between an adequate display of the volatility of the worms and the
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Figure 8. Cubine plot with 70 panels for height of Dutch boys (LMS model 0106R).

objective of minimizing the number of points outside the active plotting area. The setting may
occasionally produce entire empty panels if the model ;ts very badly.
It is sensible to choose the cut-o6 points on age such that each group approximately has

the same expected increment in the measurement. It is, however, erroneous to directly clus-
ter heights into groups, since that would inadvertently destroy the age-conditional normal
distribution. We therefore divided the observations into groups of equal size. Since groups
at higher velocities are sampled more often, this procedure approximates the objective of
‘same expected increments’. In this way, the mean height increment per age group varies
between 7 cm (ages 0.0–0.2 years) to 22 cm (ages 5.4–9.1 years) to 2 cm (above 16 years).
We experimented with non-overlapping and overlapping age groups, where the observation
appears in two adjacent panels, and found that either possibility led to similar model choices.
An advantage of overlap is that the display is relatively insensitive to the exact location of
the boundary points. A disadvantage is that it cannot be handled so easily with summary
statistics like those that were recently proposed [26]. All plots in this paper were made with
non-overlapping groups, so every observation appears just once.
Figure 8 is an example of a cubine plot, a stylized version of the worm plot. ‘Cubine’

stands for ‘cubic line’, that is, the line predicted by the four-parameter polynomial model of
Section 6.1. The interpretation of the cubine is identical to that of the worm. The 95 per
cent con;dence interval of the cubine is also plotted. One could check whether the cubine is
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Table III. Optimal LMS models for various types of reference diagrams in the Fourth Dutch Growth Study,
and the total of mis;ts (out of 16) for each polynomial shape.

Measure Ages Boys Girls
Model Mis;ts Model Mis;ts

�0 �1 �2 �3 �0 �1 �2 �3

Height for age 0–21 0106R 0 1 0 0 0105R 0 1 0 0
Weight for age 0–21 4085R 0 5 0 2 4086R 0 4 0 2
Weight for height 0–16 3074R 0 5 2 3 3074R 0 1 0 0
Head circumference for age 0–21 0095R 0 5 4 7 0074R 1 6 2 7
Body mass index for age 0–21 5135P 0 3 0 2 5116P 0 3 0 0

Note: Using a power transformation for body mass index with o6set 0 and powers 0.33 (boys) and 0.25 (girls).

located within the interval. If it is, this suggests that di6erences between the empirical and
theoretical distributions for that age group is due to random variation.
The cubine plot is useful to assess ;ner details in the case where the number of panels is

large, that is, for smaller age groups. For example, we were concerned that the rather large
height increment in the worm plot in ages 5–9 years would obscure important deviations.
The corresponding cubines for the ages in Figure 8 are quite regular, indicating that the
model ;ts well here and that the ;t is independent of the age grouping. If certain shapes
repeat in successive panels, for example, three consecutive U-shaped cubines, such repetitions
could be used to detect detailed mis;ts. Cubines could be used instead of worms, but the
view on the raw data will be lost. Also, they will not display shapes more complex than the
cubic.

6.3. Relation with the D-statistic

The application of the worm plot may lead to model choices that di6er from those obtained by
the di6erence between penalized likelihood values. For height, the worm plot usually suggests
larger cut-o6 points in terms of likelihood di6erences, thus resulting in models with fewer
parameters. For example, the likelihood di6erence between models 0101R and 0111R is equal
to D(0101R; 0111R)=27:9, while D(0106R; 0107R)=12:0. In both cases the more complex
model is a statistically signi;cant improvement over the simpler one, yet the worm plots do
not indicate noticeable di6erences between the solutions. Employing a cut-o6 point of D610
would result in model 1137R, and a cut-o6 of D65 would produce model 1169R. The latter
model clearly over;tted the data and produced wiggly curves.
One might be inclined to think that the worm plot is less sensitive than the D-statistic,

thus leading to overly simplistic models. Though both the worm plot and the D-statistic
assess similar aspects of the model ;t, this conjecture is inaccurate. For example, in mod-
elling the S curves for head circumference, the worm plot indicates appreciable changes in
the conditional circumference distribution, while the D-statistic is quite small (for example,
D(0093R; 0094R)=2:8, D(0094R; 0095R)=9:0). Thus, the worm plot is not simply a coarse
version of the D-statistic, but provides a di6erent and more informative view on the data.
Table III gives an overview of the ;nal models ;tted for the Fourth Dutch Growth Study,

as well as the total of mis;ts for each basic shape, as de;ned in Section 6.1. Note that the ;t
of the mean curve is quite good in almost all cases. An exception is model 0074R for head
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circumference of the girls. To a lesser extent, this also holds for the quadratic shape. Height
curves appear to be relatively easy to ;t with the LMS model. The worm plot of weight for
age contains clear S-shapes for ages 14–17 years, indicating that the ;tted tails might be too
thin in this age range. The story of weight for height is somewhat mixed as the curves for
the girls ;t substantially better than those for the boys. Head circumference appears to have
thicker tails than the normal distribution during the ;rst year of life. The ;t of the reference
values for body mass index (BMI) is quite good.

7. CONCLUSION

The worm plot is a diagnostic tool to describe salient features of the age-conditional z-score
distribution. It aids in ;nding proper smoothing values for EM ; ES , and EL of the LMS method.
There is a close correspondence between these smoothing parameters and particular shapes
of the worms. These basic shapes can be estimated numerically by polynomial regression.
The worm plot assesses whether a particular LMS model leaves any important unexplained
structure in the residuals. The LMS model generally adequately describes the median and the
skewness of the data, but has more di=culty in modelling deviation. The LMS model assumes
that there is not any kurtosis.
The worm plot can be used in conjunction with other methods than LMS. In fact, the

normal worm plot can assess the ;t of any model based on conditional normality, including a
large variety of linear and non-linear regression models. The tool seems especially useful in
cases where inspection of marginal normality is misleading, as in Figure 1. Using the worm
plot in conjunction with the LMS model is particularly instructive since di6erent parameters
inJuence di6erent aspects of the worm. Other growth models that will probably work quite
well include the HRY model [13], the fractional polynomial model [20] and the quantile model
[27]. Chambers et al. [21] give general formulae for estimating the con;dence intervals, so
the worm plot can also be applied to distributions other than the normal. Repetition of shapes
in the cubine plot might be investigated in a formal way by computing and testing the
autocorrelation of the shape coe=cients across age groups.
The summary of the shape estimates in Table III may act as a rough guideline for users

that ;t LMS models to other data. One should keep in mind that the results are based on
the analysis of one data set. In future studies, it could be useful to quantify and study the
variation in optimal EDFs derived from other populations.
Cole [2] remarked that producing centile charts has always been something of a black

art. His LMS method combined ideas of the method of Roede and Van Wieringen [10] and
Van ’t Hof et al. [28], and paved the way for modern methods that give reproducible results.
However, the inner workings of modern centile ;tting methods are not so obvious: black art
was replaced by a black box. We think that our worms can contribute in opening up this
black box, and hope that they provide fertile soil for further development.

APPENDIX: S-PLUS 4.5 FUNCTION FOR DRAWING THE WORM PLOT

# S-plus 4.5 functions for plotting the worm plot.
# Author: S. van Buuren, TNO Prevention and Health (1999).
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read.lms <- function(filename)
{
# function to read the z-scores from the .lms output file generated
# by the LMS software of T.J. Cole (version June 1998)

lms.par <<- scan(filename, n = 8)
print(lms.par)
lms.skip <- lms.par[8] + 2
read.table(filename, skip = lms.skip, col.names = c("age", "val", "z"))

}
wp <- function(data, layout = c(4,4), overlap = 0, worms = T, cubines = F,
coefsave = F, labels = T, hor = T, vert = F, ci = T, sub = paste (deparse(

substitute(data )), deparse(substitute(overlap))))
# function for plotting the worm plot on the active graphics device
{

panel <- function(x, y)
{

qq <- as.data.frame(qqnorm(y, plot = F))
qq$y <- qq$y - qq$x
plot (qq$x, qq$y, type = "n", ylim = c(-0.5, 0.5), xlim = c(-3, 3),
lab = c(3, 5, 7), tck = -0.01)
if (hor) abline(0, 0, lty = 2, col = 1)
if (vert) abline(0, 100000, lty = 2, col = 1)
if(worms)

points(qq$x, qq$y, col = 1, pch = 1, mkh = 0, cex = 0.25)
if(cubines | coefsave)

fit <- lm(y ∼ x + x^ 2 + x^ 3, data = qq)
if(cubines) {

s <- spline(qq$x, fitted(fit))
flags <- s$x > -2 & s$x < 2
lines(list(x = s$x[flags], y = s$y[flags]))

}
if(coefsave) {

est <- coef(summary(fit))[, 3]
assign(".est", c(.est, est), frame = 0)

}
if (ci) ciplot(sum(!is.na(qq$y)))

}
agetext <- function (classes, layout = c(4, 4), cex=0.6, dx = 0.06, dy=0.02)
# function for adding age group text to the worm plot panels
{

txt <- apply(format(round(summary(classes)$intervals,1)),
1,paste,collapse = "-")
x <- rep((0:(layout[1]-1))/layout[1]+dx,layout[2])
y <- rep((1:(layout[2]))/layout[2]-dy,each = layout[1])
text(x, y, txt, cex=cex)

}
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assign("panel", panel, frame = 1)
assign("worms", worms, frame = 1)
assign("cubines", cubines, frame = 1)
assign("coefsave", coefsave, frame = 1)
assign("hor", hor, frame = 1)
assign("vert", vert, frame = 1)
assign("ci", ci, frame = 1)
assign(".est", NULL, frame = 0)
if(length(layout) == 1) layout <- rep(layout, 2)
n <- prod(layout)
classes <- equal.count(data$age, n, overlap = overlap)
if(n == 1) form <- ∼ data$z
else form <- ∼ data$z | classes
print.trellis(qqmath(form, layout = layout, aspect = 1, strip = F,
sub = list (sub, cex = 0.5), xlab = list("Unit normal

quantile", cex = 0.75), ylab = list("Deviation",
cex = 0.75), panel = panel))

if (labels) agetext(classes, layout, cex = 0.6, dx = 0.06, dy = 0.02)
return(list(classes = classes, .est = get(".est", frame = 0)))

}
ciplot <- function(n, level = 0.95, lz = -2.75, hz = 2.75, dz = 0.25) {

# adds confidence interval to Q–Q plot panel
z <- seq(lz, hz, dz)
p <- pnorm(z)
se <- (1/dnorm(z)) ? (sqrt(p?(1-p)/n))
low <- qnorm((1 - level)/2?se
high <- -low
lines(z, low, lty=2)
lines(z, high, lty=2)

}
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